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EXPERIMENTAL TEST OF MCDOUGALL'S THEORY FOR THE ONSET OF CONVECTIVE

INSTABILITIES IN ISOTHERMAL TERNARY SYSTEMS

Donald G. Miller* and Vincenzo Vitagliano
Chemistry and Materials Sciencés Department
Lawrence Livermore National Laboratory
P. 0. Box 808

Livermore, CA 94550

ABSTRACT

The dynamic theory of McDougall for convective instabilities induced by
isothermal diffusion has been tested experimentally. These experiments, using two
homogeneous layers separated initially by a sharp boundary (free diffusion), were
done on the ternary system SrClz(O.5M)—NaCl(0.5M)—H20, chosen because of its
large cross—term diffusion coefficients. The experiments accurately verify
McDougall's theory for the onset of the fingering instability at the center of the
boundary. As predicted, this instability occurs first for compositions where the
system is statically stable,.i.e., no diffusion-induced density inversion. At
boundary edges, density inversion and dynamic instability of the diffusive-
overstable type begin simultaneously. The experiments are consistent with theory,
although instabilities were not detected as close to the onset point as for
fingering. Optical arrangements are described which are sensitive enough to detect
the instabilities. Theoretic#l consequences of the free diffusion boundary
conditions are that 1) at the edges the fingering instability condition is
proportional to the static-diffusive one, and 2) the onset compositions at the

edges depend only on Dij’ whereas fingering at the center depends on Hi as well.



1. INTRODUCTION

In recent years, the occurrence of convective instabilities has been observed
or postulated in a wide variety of phenomena which involve diffusion. ’ These
instabilities involve at least two diffusive components, which may include heat,
matter, magnetic field, angular momentum, etc. When there are just two, the
process 18 called double diffusive convection (DDC).

Examples of DDC are the heat-salt diffusivities which glve rise to fingering
in the oceansl’2 and the isothermal diffusivities of two solutes which can give
rige to convections which ruin measurements of diffusion coefficients.3’4’5
Depending on experimental circumstances, convection can destroy boundaries either
at the center or at both edges. Generally "fingering” 1s observed at the center,
and "diffusive” or "overstable” interfaces at the edges. The term overstable was
used in a more restricted sense by Vitagliano et al3 because frequently the
boundary edges appear to remain in position for long times, rather than spreading
as expected.

Other examplesl’2 include applications in lakes and solar ponds, rollover in
Liquid Natural Gas tanks, oceanography (steps arising from an initially smooth
stratification), geology (crystallization and magma chamber processes), geophysics
(mantle convection and vulcanism), metallurgy (morphology and crystallization), and

polymer solutions. In these examples the driving force for convection is the

gravitational potential, even though it is small with respect to the free energy

change.

The above phenomena are usually called dynamic instabilities. There are also

static (gravitational) instabilities. These can occur in a system whose top

solution is initially less dense than the bottom one, i.e., initially statically
stable. If the experimental conditions and diffusion coefficients have appropriate

values, the diffusion process can cause a density reversal, and thus a convective



instability. Depending on the conditions, such static instabilities may occur
either in the center or at the edges of tﬁe boundary. An obvious limiting case is
"solution overturn” where the top solution is initially heavier than the bottom
one. These static instabilities were investigated by Wendt6 for 2 and 3

component systems, and by Kim7 for 4 and more components.

At a 1983 conference,8 there was consi@erable discussion about whether
density reversals were necessary for dynamic instabilities or whether dynamic
instabilities could arise in systems predicted to be statically stable. Some
interesting results of Huppert and Manin39 on isothermal diffusing systems had
indicated dynamic instabilities (fingering) in statically stable systems. However,
the experiments used large concentration differences in systems whose diffusion

coefficients were not known, and depended on a theory which assumed cross—-terms

were zero. Other experiments by Preston, Comper and co-workerslo’11 on polymer

nixtures indicated density reversals were required, but again the density and
diffusion data are not well known. Clearly to resolve this question, careful

experiments on well-characterized systems must be cumpared with a theory which

includes cross-terms.
The theory of DDC 1s usually cast in terms of the heat-salt situation of

oceanography.l’z However, with temperature gradients, a precise laboratory test

is extremely difficult because it is nearly impossible to maintain the confining

walls at the changing temperature distribution of the solution. Moreover, in the
heat—-salt case, the diffusivity of heat is about 100 times tnat of salt, and the

heat-salt interaction coefficient (Soret coefficlent) is small. Therefore, little
choice is available in adjusting experimental conditions to magnify the precision
of the test or to see the effects of cross-terms. Moreover, values of the thermal

diffusivity, salt diffusivity, and Soret coefficients are poorly known or

unavailable over the full-range of experimental conditions.



Experimental problems are somewhat less for isothermal ternary systems with
two diffusing solutes: Isothermal conditions are easy to maintain, and the
diffusivities can be chosen to be much closer with an appropriate choice of

components, e.g., factors of 1-4. Moreover, the experiments can be done at a

composition where the density and diffusion properties are known. Finally, it is
easy to gset up free diffusion (a sharp initial boundary) between two homogeneous
solutions whose compositions are not very different; in this circumstance any
concentration dependence of the diffusion coéfficients may safely be neglected.

McDouéalllz’13 has recently provided a linear dynamical theory for ternmary
isothermal systems, which includes non~zero cross—term diffusion coefficients for
both the fingering and diffusive (overstable) cases. His results indicate that
large cross—terms could have a substantial effect on the conditions for the onset
of instabilities.

McDougall's results,13 together with those of Wendt6 and Kim,7 permit a
direct comparison of the predictions of both static and dynamic theories for the
edges and center of an initially sharp boundary. Required are systems with known
densities and diffusion coefficlents, and a detection system sensitive enough to
indicate where boundary disturbances occur.

An important first step was taken by Huppert and Hallworth,14 who sought out
systems with very small cross-terms over a wlde composition range. Again, the
fingering instability was found to occur in three systems predicted to be
statically stable. The shadowgraph technique was used to observe the
instabilities, but unfortunately quite large concentration differences are
As they note, the dynamic instability criteria remain to be tested when

required.

cross—-terms are large, both for the onset of disturbances at the center and at the

edges.



Support for Huppert and Hallworth's conclusions was also provided by
Vitagliano.ls They analyzed existing schlieren data for the system
NaCl—NH401—H20,5 which has a non-negligible cross—term D21. The data are
quite consistent with McDougall's theory,13 both for fingering at the center of a
boundary predicted to be density stable and for overstability at the edges.
Unfortunately, the compositions are not sufficiently close to the conditions for
the onset of these phenomena to test the theoretical imnstability criteria in detail.

For free diffusion boundary conditions (sharp initial boundary) in liquids, it
can be shown (1) that the diffusive (overstable) criteria are identical to the
static (gravitational) criteria everywhere throughout the boundary,ls’16 and (2)
that at the edges of the boundary, the fingering criterion is proportional to the
static—diffusive criteriontl7 These results partially explaln the results of

Preston et al.lo’11 On the other hand, the fingering instability can occur even

when the system is statically or diffusively stable, which explains the results of

14 and K:l.m.l8

Huppert et alg’
In this paper, we examine experimentally the predictions for the onset of
instabilities from free diffusion boundaries for both static and dynamic stability

theories, including the fingering and diffusive (overstable) cases. We have used
the system SrClz(O.5M)-NaCl(0.5M)-H20, whose cross—terms are substantial.19

Here M denotes the molarity. Relatively small concentration differences have been
used to minimize concentration dependence. Four optical arrangements are sensitive
enough to be used with small concentration differences. These are Rayleigh,
modified Gouy, Schlieren, and "single slit Rayleigh". Singly or in conjunctionm,
the last three arrangements allowed us to determine where the abnormalities are in
the boundary.

For our system with large cross—terms, we find that the dynamic theory

criterion for the onset of fingering at the boundary center is closely confirmed



within the sensitivity of our measurements. The onset of instability at the edges

is consistent with the static/overstable/fingering criterion, but the instabilities

are only detected somewhat inside the predicted omset point. A posible explanation

is that the diffusion driving force dci/dx 1s less at the edges than at the

center for a given Aci.

In a companion paper, Vitagliano et al. 0 have obtalned similar results for

the system sucrose(O.lM)-NaCl(O.3M)-H20, using schlieren and Rayleigh optics to

examine boundary disturbances. This system has small cross—term Dij when HZO

is assumed to be the solvent. However, they point out that the choice of solvent

is arbitrary, and when sucrose or NaCl is chosen as solvent, the

transformationle’22 can give rise to large cross—~terms. Thus, concentrating on

systems with small cross-terms is also arbitrary.

We will conclude that in terms of the 1983 controversy, the partisams of

the dynamic theory are correct for the case of fingering at the center of the

boundary, and that both sides are correct for static/diffusive/fingering at the

edges of the boundary.

2. CONDITIONS FOR INSTABILITY AT A FREE DIFFUSION BOUNDARY

iMfcDougall's theory for both kinds of dynamic stability can be

rewritten15’16’17 in the notation customarily used by experimentalists doing

liquid diffusion measurements.ZB’24 In particular, mole units are used;

constituent 2 1s the faster moving solute; and the vertical distance x is positive

going downwards. All inequalities indicate conditions for instability.

Depending on the application, inequalities can be written either as conditions

15

independent of the signs of Aci, Dij’ and Hi’l7 or as conditions on AczlAcl.



The latter may require an analysis of the signs of Aci, Dij and Hi' Here
c; are the concentrations of solutes i and 2 in moles—dm s Dij are the
diffusion coefficients in cm—s_l on the volume-fixed reference frame, and Hi

are the coefficients 3p/3ci in the linear density equation.

p(cy,ec2) = D(Ei,zé) + Hj(e1-c1) + Ha(ez—c2) &Y

(Hy = B,Hy = @ in Ref. 15, ¢y is the average concentration of

solute 1, p 1s the density in g-cm-3, and A of a property P is

[P(bottom) - P(top)].

2.1 General Conditions

We summarize the various instability conditionms.

First, a system whose top solution is more dense than its bottom is

unstable. This can be written13’17 in terms of a stability function S

sm = Ap = HlAcl + HzAcz <0 2)

independent of the signs of Hi and Aci, or as Ref, 15.

Ac -H :
< ™
> "H. (3)

H,

[72]
<
]
7]
=N

where the direction of the inequality sign depends on the signs of Aci and

Hi' Eq. 2 and 3 are the conditions for solution overturn; an equality sign

will give the neutral density line.

For static (gravitational) instability, the result of Wendt6 in one

]
dimension can be written in terms of a function G

¢ = apgdcy Lpdey g (&)
dx ox ox



where Bcilax are obtalned from the solutions for appropriate boundary

conditions of the diffusion equations

dc 32c azcz

2 2
Bcy=p._ 3C 4p_0c
3t T3 22 /5
ox ox

iy
G, 3 acz > Hl
v 3cl < H,

McDougall's conditions for dynamic instability of the diffusive

(overstable) type have been shown by Vitagliano et al.

reduce to the static conditions G of Equation 4 or 7 for liquids.

happens because Dij are small compared to p and viscosity n;
result is valid everywhere in an arbitrary boundary.
For the fingering instability in an arbitrary boundary,

conditions can be written independently of the signs of dci,

17
as

' a

Po=F, ¢ +r 2% <y

I

A 1722 2721

B 211 112

3 and Tyrrell 6 to

the McDougall

D;y, and Hy

(5)

(6)

(7)

(8)

9)

(10)



or alternatively depending on the signs of dci, Dij’ and Hi

F o= % < (11)
v a >-'

acl B

HIDF

Care with signs must be taken because there are systems with Hi and even negative

21,22

Dll'

2.2 Free Diffusion Cond;tiona
We now specialize to the free diffusion case. 13,15,17 It is the

easiest to set up for preclsion optical measurements, 4 being the diffusion

of two long columns of solution into each other across an initially sharp

interface. The solutions of Equations (5), (6) for this case23 are

d; o g d erf(s;y) . x d erf(s,y)
im dy

s 2 2
= "2 . exp(-s8,y )[K, w + K, ] (12)
——73 2 ip im
2(1rtl 2)
where
1/2 _ .
8y T 9y (13)
o = Dyg ¥ Dy +2 (14)
7D
o, =227 P11 " 2 (15)
7D
z = [0, +0,)% - 4012 = (a2 4 4p_p. 122 (16)
11 7 P22 12721
A=D,,~Dy, an



D =D;;Dy5 = DyyDyy

“1p

Xm

and sz

respectively.

= Phe; ~ g)fe
YA

+
= Pyfie; *+ q b,
%7

A+ 12
-A + 2

2D12

2DZl

and sz are obtained by interchanging 1 and 2 in Klp and K1m

1 2, 2 2
w = ;E exp [-y (8) - 8,)]

The quantities 815 83, 8178y, and w are all positive when Dll < D22,

hence w runs from slls2 at y = 0 (center of boundary) to 0 at y = @

(edges of

diffusion

x
2t1/2

boundary). The o, are the réciprocals of the eigenvalues of the

matrix.22

Finally, w and y are given by

(18)

(19)

(20)

(21)
(22)
(23)
(24)

(25)

(26)

Eq. 12 can be substituted into the instability criteria Eq. 4, 7, 8, 1l.

After cancellation or factoring out known positive quantities, the following

results a

For the static-overstable case, we obtain for Gln

G =
m

re obtained.

GlAcl + GzAc2

-10~

(27)



G, = Hl(wpl + pz) + quz(l-w)

@
|

= qul(l-w) + Hz(p1 + wpz)

The expression for Gv can be obtained from Eq. 33 of Vitaglianol

assumption that n 1is large:

¢ = Bcy o (A-BZ) - 2D,,(H,/H,)

v ZEI > TA¥BZ H7H) + 2n12

where the direction of the inequality sign depends on the signs of Aci,

Dij’ and Hi, and where

1+w

B=-—...

1-w

For the fingering case, we obtain17 independent of signs

F,Ac <0

m - Fpbey + Fylc

o
]

2

o]
]

EA(wp1 + pz) + Fqu(l-w)

F_ = ?Aql(l-w) + FB(p1+wp2)

and from Eq. 32 of Vitagliano et al.15 with misprints corrected, we get

By D)y Dy D, Hy
Ac G5 - p )@aB2) - 2, (5= - i

p o2 <« HDy Py 11 i
v QAc, > D H bD,. H D.,.
Lo G2 -Dasn + 0,62 2 -

1 11 B Dg

which depends on signs of Aci, Dij’ and Hi'

(28)
(29)

3 plus the

(30)

(31)

(32)

(33)

(34)

(35)

In all the conditions, an equality sign ylelds the point of the omset of

instability.



For free diffusion, acilax are symmetric about the.center of the
boundary. Therefore between the center and the edges, the Bcilax change
monotonically. By eq. 4 and 8, the static and dynamic instability conditions
also change monotonically, with their extrema at the center and at the edges.
Counsequently, the onset of each type of instability will begin first either af
the center or at the edges. We denote the center (y=0) and the edges (y*®)

by superscripts o and @ respectively.

It can be shown17 that the fingering criterion at the edges is

proportional to the static-gravitational one; namely,

Gm = °1F | _ (36)
@ @ ’
G, = F (37)

and, as noted earlier, the overstabllity conditions always reduce to the

static instability conditions. Therefore, at the edges, only the
gravitational criteria are needed. This shows that at the ES&EE’ fingering
and diffusive instabilities only occur when a density inversion does.

From Eq. (27) and (30) with w=6. plus some factoring, it can be shown that

¢ = +H_q.]Ac. + [H Ac, = ———-—qu1+H2p1] Ac_ +p.Ac.] <0  (38)
w = [ Pytiya,1c, + [H q +)p) JAc, = [ Py Lqy4c, +p, 4c, ]

independent of signs, and that

2H2
Iy 1 P _az (39)
v Ac, > H ' A+Z 2D12 .

1 2
[(A+z}q + znlzl

~12-



depending on signs. Note that at the onset of instability at the edges

(equality signs in Eq. (38) or (39)), AczlAcl depends only on the

Dij’ and not on density derivatives.

At the center, Eq. (27) and (30) yield the static~diffusive conditions

G2 = [H (sl ) + Hoq4( fl)]Ac + [H,q.(1 fl, H ! YlAe, < 0 (40)
n = (5 Pr*P; 215(1- 5, %1 [H;q,(1- s, 2(pyt 5P 10

independent of signs, and

H
1/2 2
o By o T Dy TPyl g
1 Y I T
11 " H, P12

depending on signs. Similarly, Eq. (32) and 35) yield

0 51 51 5 81
F, = [FAC;—p1+p2) + Fp qz(l— ;zﬁlﬂcl + [FAgl(l—-;;) + FB(pl+ ;;pz)]Acz <0 (42)

independent of aigns, and after gome algebra

£
1/2 2
Ac [Dyy + D7 =Dy 71 ¢ '
2 < 1 .71
F =% —_ (43)
v c > £ £
1 [D..+ /2 _ p -y 2
11 12 ,
depending on signs. Here
_Hy Dy Dy,
HTE DL D, (44)
1711 11 :
D H
£, = g ~ o (45)
11 1

In this form, Eq. (43) 1s similar in structure to Eq. (41). Clearly, the

static-overstable and fingering conditions are different at the center.

-13-



If both cross-terms are zero, then the equations are much simpler. With
various known positive factors deleted, we have at the edges
@ 1/2 |
= ; A < . . = =
G =H, D7% A, <0 . (»,, =Dd,, =0 (46)

and at the center

o _ 1/2 1/2
G, = Hy D, Acl + HyD1y Acz <0 (D12 =Dy = 0) (47)

O- 3/2 3/2 e ] =
Fo = H Dyo" Bey + D77 8, <0 (D, Dyy 0) (48)

If the H,; are positive, these equations yield the fdrms of Huppert and
9,14 ' :

co-wprkers.
3. SOME IMPLICATIONS OF THE INSTABILITY CRITERIA FOR FREE DIFFUSION

Contrary to what might be thought, both static-overstable imstability at
the edges and fingering instability at the center can be experimentally

observed with bothlégifpositive; Eq. (42) suggests that a large positive

cross—term will give rise to fingering in the center, and Eq. 39 that a large
negative one will give static-overstable instability at the edges for positive
Aci‘ These conclusions are confirmed by the real systems Bu4NBr—KBr-H2018

and ZnClz-K,Cl-HZO,25 respectively.

We have applied Eq. (32) - (48) to various artificial and experimental
gystems in the region where Sm >0 11e., where the solution is stable
against overturn, and the following have been found. First, whenever Acl
and Ac2 are such that there is instability at the edges of the boundary,
the center of the boundary is stable against both fingering and density

o o
inversion (i.e., ¢ 20, F. >0). If AczlAc1 goes deep

enough into the instability region, the solution overturn condition is

=14~



reached. Second, whenever Acl and Ac2 are such that there is

fingering or density inversion at the center, the edges of the boundary are
stable (i.e., q: = olﬁ:_z 0). Third, as instability is approached at the
center in a series of systems with different AczlAcl, the fingering
instability is always reached first. When A¢2/Ac1 goes sufficiently

deep into the fingering region, the static-diffusive condition is reached, and
when still further, the solution overturn condition is ultimately reached.
Thus, at or within the composition region of instability at the center of the

o o
) < .
boundary, F <G <5 ; and in addition if § 20,

then G: > 0 also.

If the system is sufficiently unstable from either cause, of course the
whole boundary can be completely destroyed in time. Actually, if the
compositions are such that static instability is predicted at the center, then
fingering convection should have already destroyed the center of the
boundary. Consequently, the static condition at the center should have no
experimental consequences. It is expected and exﬁerimentally found that the
deeper one goes into either instability region, the larger are the
disturbances until the entire boundary is affected and ultimately completely
destroyed (see plates 1 and 2).

It is found from the theory that the onset compositions at the edges
depend only on Dij’ and at the center on Dij and ﬁi as well. The actual
numerical values of Dij and Hi determine the extent of the stable and

unstable regions, and which type of instability is reached first on the

diagrams described below.

~15-



3.1 Visualization Methods

Although convenient in many theoretical cases, diagrams in terms of
dimensionless variables are less convenient in experimental situations. In
particular, the characteristic length is ill defined, and there 1s no exact
tie to experimental conditions, For free diffqaion boundary conditions we
suggest two alternatives, "criteria vs. Acl plots” and a "clock~like
diagram".5 As noted earlier, for free diffusion at any given composition
ratio, the largest or smallest value of each instability criterion is either
at the center or at the edges of the boundary. Consequently, only_thoée lipes
need be drawm.

On a criteria plot (CP), the numerical value of each instability
criterion can be plotted as a function of both Aci in a 3-dimensional

plot. A more convenient 2-dimensional way is to plot them as a function of a

normalized Acl with proper regard to sign. The normalized Acl is

Be,y | | (49)

lAc1l+lAc2l

and runs from 0 to 1 or Q0 to -1. In Figs. 1-3 are the CP plots for our
SrClz—NaC1-H20 system using the experimental Dij an(:l.H:l glven in Table I.

All criteria have been scaled by multiplying all Dij by 105. " On each

diagram are lines representing the criteria functions Sm, G;; E:, G: and F;
of Eq. 2, 38, 36, 40, and 42 respectively. If the Acl fraction of a

system is marked as a point at ordinate 0, then the system will be stable to
any. process whose criterion line 1s above the point and unstable to any
process whose criterion line is below it. The point of onset of an
instability is where its criterion line crosses the zero ordinate, and the

distance below zero is a normalized measure of how deep into instability the

system is. If more than one instability is possible, the lowest (most

negative value) is the controlling one.

-16—-



Fig. 1, with both Aci positive, has all lines above 0. Therefore,
for this system, all positive Aci combinations are stable to golution
overturn, fingering, and overstability, so the graph is labeled a stable

region. As noted earlier, there are other systems whose diagrams have lines

going below zero even when both Ac, are positive.

Fig. 2, with Acl negative and Acz positive, has a small stable
region, and is most stable at Acl-O. As the Ac1 fraction becomes more
negative, F; (fingering at center) crosses zero first, followed by
G:, and then Sm. Consequently, fingering can occur even if the system
is gravitationally stable at the center and edges. Even as solution overturn
is approached, the system doés not first become unstable at the edges.
Because fingering appears first when starting from a stable region, this giaph
is labeled a fingering region.

Fig. 3, with Acl positive and Acz negative, shows a stable region and is
most stable at a Acl fraction of 1 (Ac2=0). In going from stable to unstable
(Ac1 decreasing), the G: and F: lines cross zero first, and at the
same point. Therefore, the static-overstable instability at the edges starts
first, and the graph is so labeled. Even as solution overturn is approached,
fingering or static instabilities at the center d6 not come first. Eq. 36
requires the G°° and F: lines to cross at zero ordinate. (The diagram for

both Ac1 negative is not shown here, but the system is unstable everywhere

because all lines are below zero.)

The clock-~like diagram (CLD) has the advantage of containing all the

experimental conditions on a single plot, and shows the boundary lines,
regions of instability, and relations among the regions more clearly than a

set of CP diagrams. Its disadvantage is that a quantitative measure of each

-17-



instability cannot be shown. A CLD has the concentration of the slower moving

component c; as the abscissa and the faster moving one c, as the ordinate.

Fig. 4 1s the CLD for our SrClz-NaCl-HZO system.
On a CLD, the average composition of the system is a center of symmetry

for the compositions of the corresponding top and bottom solutions. The lines

on this dlagram indicate the AczlAcl ratios at the onmset of the

instabilities and are obtained from equality signs in Eq. 3, 39, 41, 43 for

@ (-]
5 GV=FV, G:, and Fg respectively, or from zero values of Sm’ Gm’

-v!
(- -]
G, and F:, respectively. |

Line N (Sv, Eq. 3) indicates compositions of neutral demsity (solution
overturn). Bottom solutions 1ie above it and top solutions below it when Hy

and H, are positive. If both are negative, the opposite is true. If either

2

Hl or H2 is negative, the higher density solutions lie on the side for

which ¢, or ¢, respectively is smaller.

Line G (G:;f:, Eq. 39) is the onset line for static/overstable/finger
instabilities at the edges of the boundary. These instabilities appear for

top and bottom solutions whose compositions lie between lines G and N.
Line F (Fg, Eq. 43) is the onset line for fingering at the boundary

center. These instabilities appear for top and bottom solution compositions

between lines F and N.
Line D (c:, Eq. 41) is the onset line for static—diffusive

instabilities at the boundary center. The compositions of solutions between D
and N would be statically unstable. The D line always lies between F and N,
so that there is a region between F and D which is density stable but
fingering unstable.

Line R is the isorefractometric line, along which the refractive index of

top and bottom solutions is the same. This line, not related to instabilities,



tells the experimenter where there will be the same number of Gouy fringes on
each side of the undeviated slit image. (The ones above are "negative”

fringes, so that Jm = 0).

3.2 Effects of Changing Dij and Hi
The slopes of CLD lines depend on the values of Dij and Hi' However,

all free diffusion CLD are topologically similar to Fig. 4 or its mirror image
about a vertical or horizontal line. The field of instabilities always lies
in that area between lines F and G which contains line N. Stable boundary
compositions lie in that area between F and G which does not contain N. Some

general features of CLD's are indicated on Fig. 5. The quantities

P =D, + (H2/H1)D21 . (50)

P, =D,, + (Hllnz)nl2 (51)
and the inequality

P, 3 2, (52)

will be useful. Eq. 50 and 51 are related to the Pil) and Tfl) used by

Vitagliano et al.5

Consideration of the effects of changing Dij and Hi ylelds the

following results.

(a) Changing the sign of H2/H1 reverses the fingering and overstability

fields with respect to line N, as shown in Fig. 5A and B. The G line is

invariant since G: is independent of H, and H, by Eq. 39.

(b) Changing the signs of H2/H » Djps and D, transforms the CLD into

its mirror image with respect to a vertical or horizontal line through

the center of symmetry.
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(c) Increasing D12 and/or decreasing D21 turns the F line clockwise and

the G line counterclockwise, as shown by the arrows on Fig. 5C. With
appropriate values, the F or G lines may have a positive slope; in these
cases instabilities can occur when both Aci are positive.

(d) For P1<P2 and H2/H1>0, as shown in Fig. 5A or C, the composition region
of fingering instability is clockwise from N to F and of overstability is

counterclockwise from N to G. For.P1>P2 and H2/H1>0, the
composition regions reverse as shown on Fig. 5C.

(e) If P, =P, both the F and G lines fall on top of the N line, and the
diffusion system is stable for any AczlAc1 ratio. In this
circumstance, T (p) and T _(p) of the diffusion equations

(Ref. 5, Eq. 19, 20) are independent of Ac, and Ac,.

(£) For D,, much larger than Dll’ the F line approaches an infinite slope

22
(vertical) and the G line a zero slope (horizontal). This is analogous

to the heat-salt situation where the thermal diffusivity is 100 times the
mass diffusivity.
An alternate CLD is the plot of Ap2 vs Apl. In this

representation, the N line is invariant to changes in Hl and H2 and its

slope is always -1.

It is also instructive to examine the demsity brofilea which would be

induced by diffusion if convection were inhibited. As AczlAcl ratios

approach the solution overturn ratio, the diffusion equations predict the
shapes shown in Figure 6. The fingering situation is indicated by sketches

1-5. Sketch 1 corresponds to the onset of fingering at the center; sketch 2

shows a multiple inflection point and corresponds to the fingering situation
between lines F and D in a CLD, even though the demsity is monotonic with X.

When the slope at the center is horizontal, as in sketch 3, this corresponds
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to line D, the onset of static instability. Sketch 4 is further in, and there

1s a clear density inversion at the center. Finally sketch 5 is the solution

overturn case. Sketches 6-9 indicate the profiles for the static-overstable

situations at the boundary edges. Sketch 6 corresponds to the onset of
overstability. Sketches 7 and 8 are in the overstable region as can be seen
by the maxima and minima at the edges. Finally sketch 9 corresponds to

solution overturn; it is the reverse of sketch 5.

4. EXPERIMENTAL
4.1 Materials and Compositions

We have primarily used the system SrCl,(0.5 M)-NaCl1(0.5 M)-H,0, which
has significant cross—term Dij' The concentrations are high enough so that
Aci of 0.2 do not significantly change the values of Dij’ but are not so

concentrated as to use large amounts of highly purified materials. Densitiles

and diffusion coefficients are given in Table I, with detalls to be reported
elsewhere.19 In Table II are the border compositions for the onset of
instabilities. In Table III are the Ac; and Ac, for a series of

experiments from stable to nearly solution overturn for both the fingering and
overstable regions. One experiment was done for ZnClz(O.S)-KC1(4.O)-H20

previously observed at LLNL to be unstable at the edges even though Aci

are both positive.
26,27,28
Preparation and sources of materials are described elsewhere.

Solutions were prepared by weight, using analyzed stock solutions of SrCl2

and ZnCl, and dried samples of NaCl and KCl. The water was deionized, then

2
distilled once.
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4.2 Optical Techniques

Optical methods are best to observe the instabilities because the
convective motions cause light beams to deviate bpth in vertical and
horizontal planes. The shadowgraph technique has been widely used for large
scale experiments with wide boundaries.l’z'g’14 Hoyever, the narrow-
boundaries of free diffusion are difficult to visualize by this technique.
Consequently, we have explored the achlieren and interferometric methods used
in measuring diffusion coefficients.z4 The high precision Gosting
diffusiometer,29 ﬁow at LLNL, has a simple Gouy and Rayleigh optical system

whose images are photographed on 4 in x 5 in films or plates. It can be

converted to the astigmatic Philpot~Svensson Schlieren system3o-35

by the
addition of other optical components at and beyond the usual focus of the
Gosting diffusiometer. These additions give a smaller image which can be
captured on 35 mm film (Kodak Panatomic I1S032.)

The simple Gouy and Rayleigh optics average over each horizontal plane in
the cell, and do not really show the instabilities which cause variations in

refractive index in such a plane. The simple Rayleigh does show some average

composition differences as well as light thrown out of the diffraction
pattern, but the results are less satisfying than those from the
Philpot-Svensson arrangement. Simple Gouy and Rayleigh photographs taken on
Royal Pan film are not reported here.

Our Philpot-Svensson arrangement is shown in Figure 7. There is a light
source slit LS, which is focused by the main lens SL onto the schlieren plane
(sP) (the photographic plane of the usual Gosting diffusiometer arrangement).
The converging light passes through a mask M (two vertical slits for Rayleigh,
one for other arrangements), and then through the cell containing the

boundary. For schlieren pictures, a diagonal slit or phase plate is placed at



the schlieren plane. Beyond it is a camera lens CL which focuses the cell C

on the photographic plane (PP). Beyond the camera lens is a cylinder lems CY
which focuses the image at the SP onto PP.

With this Philpot-Svensson system, there are five arrangements of the
components which could indicate refractive index anomalies caused by
convective motions. These differ in the orientation of the source slit or
cylinder lens, and in the number of slits in the cell mask. We found three of

them to be particularly useful; Gouy, (G) "single slit Rayleigh” (SSR) and

schlieren (S).

(1) Gouy.

In this "modified” Gouy, the source slit and cylinder lens are both
horizontal and a single cell mask slit is used. The usual Gouy image at SP
shows no evidence of fringe distortion. However, the cylinder lems, which
refocuses this image onto PP, uncouples the horizontal averaging if there are
refractive index disturbances along a horizontal plane in the cell.
Therefore, convective motions give rise to distorted Gouy fringes. OQuter Gouy
fringes are primarily formed from effects in the central portion of the
boundary, and inner fringes from the combined effects of the two outer
portions (edges) of the boundary. Consequently, observing which fringes are
distorted give an excellent characterization of the location and extent of the
disturbances. However, there is not a 1-1 correspondence of cell level with
fringes, since both sides of the interface contribute to each fringe (and wave
theory shows that every part of the solution contributes a small amount to
each fringe.)36 This technique was found to give the most sensitive measure
of the instabilities. It i1s a little more tedious experimentally than the

others because the source slit width and exposure times must be decreased as

the fringe pattern shrinks with time.
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(2) Schlieren

Here the source slit remains horizontal, but the cylinder lemns is
vertical. A diagonal line from a phase platé at SP intercepts the light
deviated by the cell boundary. This light forms an image at PP of the
vertical refractive index gradient in the cell. Each point on this image is
the derivative averaged horizontally at a corresponding level across the cell,
but does not show individual horizontal convective disturbances at that
level. However, if disturbances are large enough; the aVerﬁge will be
effected and the shape of the overall gradient curve:will change irregularly

with time. This technique works best for the overstability case, but is not
as sensitive as the modified Gouy.

(3) Rayleigh

For Rayleigh, a second slit in the cell.mask is used ove;.the reference
arm of this interferometer (here the water of the thermostat bath). The
source slit and the cylinder lens are both vertical. The fringes could not be
resolved by the Panatomic film at early times. Moreover, they result from a
horizontal average across the cell at each level, and do not show individual
convective disturbances. For sufficiently large disturbances, the Rayleigh
patterns show unusual changes with time, but are less sensitive than the

Gouy. Some light is deviated from the diffraction pattern by horizontal

refractive index variations, but the effeét is better seen in the following

arrangement.

(4) Single S1it Rayleigh

This arrangement is the same as the Rayleigh except only the cell mask
slit over the cell is used. In stable diffusing systems, a long blurred

rectangular image of the cell is obaerved,35 because any light deviated

downwards by the boundary is swamped by the undeviated light. However, in the



presence of refractive index variations along a horizontal line, light is

deviated horizontally. At the camera, these deviations can appear as

distortions of the rectangle or even as blotches on either side of a fuzzy
image. This technique i3 quite sensitive, especially for the fingering
situation. It also corresponds well to a one—to—one correspondence between
cell level and image level.

(5) Vertical Schlieren

A schlieren arrangement in which the source slit is vertical and the

cylinder lens horizontal was suggested by Prof. G. Kegeles37 in a different

context.38’39 This averages along vertical planes in the cell, and will
indicate the derivative of refractive index in the horizontal direction. This
should indicate finger instabilitiles. However, finger images at a particular
level in the boundary will be swamped unless the large uniform regions of the
cell are masked off. This requires a vertically movable, narrow horizontal
mask, which was not available for this research. This technique should be
explored in future work.

Table 2 summarizes these configurations where G, S, R, SSR, and VS refer
to modified Gouy, Schlieren, Rayleigh, "single slit Rayleigh”, and vertical
schlieren. H and V refer to horizontal and vertical positions of the source
slit or cylinder lenms.

In stable systems, our Philpot-Svensson Gouy and Rayleigh images look the
same as the corresponding ones from the simple arrangement but are smaller.

In unstable systems, the Philpot-Svensson Rayleigh fringes still look the same
as thelr simple counterparts, but the "modified Gouy"™ fringes show
distortion. So do single slit Rayleigh patterns, and to a somewhat lesser

extent so do schlieren. The effectiveness of these last three can be seen in

the accompanying plates 1-6.
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The added Philpot-Svensson optical parts consisted of a Schlieren phase
plate from an electrophoresis apparatué, a Perkin-Elﬁer spherical lens from an
earlier University of Wisconsin diffusiometer (focal length ~75 cm), a
Continental Optics 1/4 wave cylinder lens (focal length _20 cm), and a
Zeiss Rolleiflex 35mm camera with lenses removed. fhe cylinder lens was
mounted on a Klinger rotation stage which allowed a rapid change back and
forth from horizontal to vertical. These were mounted on riders with screw or
micrometer mounts to aid in accurate positioning. Positioning and final
focusing at PP were done with the aid of a Zeiss alignment telescope, using
the sharpest R;yleigh fringes from a sharp boundary for the camera lens and
best image of the horizontal LS slit at SP for the gyl;nder lens._ The
emulsion plane of the camera was located at PP, the.éombined camera and
cylinder lens focus.

The light source was a 100 watt AH4 Hg lamp, with the blue line removed
with a Wratten 77A filter. Some initial pictures show an unwanted red line at
the undeviated slit image, which was subsequently eliminated by the addition
of a Wratten 52 filter. The cell was a Beckman glass. Tiselius cell whose
reference arm for Rayleigh is the water of the water bath. The cell was
filled using standard techniquea.24’40

The boundary sharpening technique consists of a long needle at the optic
axis through which top and bottom solutions flow out. At the start of the
run, a stopcock is closed, and the needle pulled out. This technique is quite
satisfactory, but there should be less initial boundary distortion if the

boundary were sharpened from the side using a more complex cell with a side

slit.24
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5. Results and Discussion

The optical results of our experimental runs in stable and unstable
regions are shown on Plates 1-6. Our experimental conditions, given in Table
III and on Figs. 1-3, are best shown on the CLD, Fig. 4.

As noted in the previous section, stable boundaries have a ladder-like
undistorted set of Gouy fringes (Plate 1.1l) and é rectangular SSR image (Plate
4.,5). Moderate boundary disturbances at the center distort the outer (lowest)
Gouy fringes and leave the inner onmes undistorted (Plate 1.4); iﬁ the SSR
image, light is deviated at the center (Plate 3.6). Moderate disturbances at
the edges distort the inner Gouy fringes, and leave the outer ones undistorted
(Plate 2.4); in the SSR image, light is deviated at the boundary edges (Plate
4,7).

Plate 1 contains sets of Gouy fringes for a series of systems whose
compositions start in the stable region and go into the fingering instability
region. The stable boundary pilcture 1.1 exhibits the expected unperturbed
horizontal fringes throughout the whole pattern. Picture 1.2 corresponds to
run 2 which i1s just inside the onset of fingering (line F) but is density
stable. The outer three or four fringes are distorted, indicating a
disturbance at the center as predicted by theory. Runs 3-5 are increasingly
deeper in the statically stable, fingering unstable regilon; and the
corresponding pictures 1.3-1.5 show the distortion of fringes spreading inward
(upward) until the whole pattern is distorted in picture 1.5. The distortion
is still worse in run 6 (picture 1.6) which would also be statically unstable
at the boundary center. This plate neatly verifies (1) that boundary
instabilities can occur at the boundary center even if the systems are
statically stable, and (2) that the instabilities are visible just inside the

onset line predicted by McDougall's theory.
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Plate 2 contains sets of Gouy fringes for systems whose compositions
start in the stable region and go into the static—overatable instability
region. It can be shown from Eq. 39 that inversions of concentration,
density, and refractive index appear at the same AczlAcl ratio at the

boundary edges. Consequently, fringes will appear above the undeviated slit

image, as well as below. These "negative” upper fringes correspond to the
edges of the boundary, and therefore should show any perturbations there.
Picture 2.1 is the stable, undistorted case. Picture 2.2 (run 11) shows a
slight distortion of the uppermost fringe, all others being undistorted.
Pictures 2.3 (run 10) and 2.4 (run 9) are increasingly deeper into the
instability region, and only the outer fringés (corresponding to the boundary

center) are undistorted. Pictures 2.5 (run 8) and 2.6 (run 7), still more

unstable, show disturbances throughout the entire pattern. These results are

consistent with theory, but it was not possible to see distortion close to the
overstability onset line G. It is necessary to go deeper into the
overstability field than into the fingering field to see convection.

Plate 3 contains sets of Gouy and SSR pictures taken at nearly
corresponding times during the course of run 6 (deep in the fingering
region). Plate 4 contains similar sets taken during the course of run 8(deep

in the overstable region). Both plates clearly show substantial changes in

the shapes of the Gouy fringes with time, indicating the irregular growth of

convective motions. The SSR on plate 3 shows that an initlal modest fingering

perturbation grows with time until it ultimately obliterates the boundary. In
contrast, the SSR on plate 4 shows that an initial distortion at the edges
becomes weaker with time, and the center becomes a little more regular.

We

Boundary perturbations are still visible at some distance from the center.

note that the fingering effects spread throughout the boundary more rapidly
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than do the overstable ones, as shown by the SSR plctures and by the fact that
the fingering Gouy pattern shrinks more rapidly than the overstable Gouy
pattern.

Plates 5 and 6 contain schlieren patterns for the fingering and
overstable cases respectively. The runs must be deep inside the convection
field before schlieren patterns show any effects. Since schlieren patterns

show the gradient of refractive index, the patterns of plate 5 would show two

maxima and a deep minimum at the center in the absence of convection.
Convection destroys this appearance, and only one maximum is observed.
However, the pattern is 1rregular and changes shape with time. Small
perturbations along the base line are evidence of convective motiomn through

the top and bottom solutions.

Plate 6 1s more impressive. The refractive index (and demsity) inversion
at the edges of the boundary are clearly evident. Convective motion at the
edges is shown by the irregular changes in the patterns with time, e.g., the
extra "horns” which appear and disappear. The disappearance of convection at
the center after long times is evident in picture 6.6.

Our one experiment with ZnCl, (0.5M)-KC1(4M)—H20 was predicted to be

unstable at the edges with positive ACi, and indeed gave Gouy photographs
(not shown) with slight curvature in the innermost fringes quite similar to
picture 2.2,

Our experiments involve an isothermal ternary system with significant
cross terms which undergoes free diffusion. We conclude that these
experiments accurately verify McDougall's theory for the onset of the
fingering instability at the center of the boundary. As predicted, this
instability first occurs for compositions where the system is statically

stable. Our experiments are consistent with the predictions of McDougall's
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theory in the overstable region at boundary edges, but it has not been
possible to detect instabilities as close to the point of onset as was the
case for fingering.

We suggest the followin; for future work. First, a more systematic
variation of Acl for the same AczlAcl ratio té sée if the
numerical values of q: and F: can be correlated with the onset of
convection. For example, in an additional run with Acl at one~-fourth the
value in Table II1, convection was not observed. Sécond, a cell with a side
slit for sharpening would improve the initial boundary. Third, a movable

horizontal mask with vertical aschlieren should be explored as a detection

technique.
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TABLE I. Properties of SrCly-NaCl-H,02

0.5 1051)11
0.5 105p;,
0.132650 107Dy,
0.038141 109Dy,
2441.8
856.2

Units are cj in mol-dm'a, Hy in g—dm3-mol'l-cm'3, and Djj in en?-gl,

0.9980
0.1242
0.2975
1.2310



TABLE II. Philpot-Svensson Optical Arrangements
Nominal
wWidth of
No. of Cell  Phase Cylinder Source Slit Exposure
Type Source Mask Slits Plate Lens (microns) Times(s)
Modified Gouy H 1 not used H 100-30 12-5
Schlieren H 1 in ' 100 8 1/2
Rayleigh v 2 not used v 30 11/4
"Single Slit :
Rayleigh” v 1 not used v 50 21/2
Vertical
Schlieren v 1 in H - -
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TABLE III. Criteria for System SrClz(O.5M)—NaCl(0.5M)—H20

Type Acl Ac2 Acl AcZIAcl Description
T8e) T#Thc,T

F <0 >0 -.081 -11.30 finger border

D <0 >0 -.179 - 4.60 diffusion instability border
N - - -.223 - 3.48 solution overturn
R >0 <0 .260 - 2.85 isorefractometric ratio (Jyp=0)
G >0 <0 «526 - 0.90 static-overstability border

TABLE IV. Experimental Runs for SrCly(0.5M)-NaC1(0.5M)-Hy0
Case Acl Acz Acl AczlAcl _ J: | Description Plate
The;TeTAe,T

1 0.06 0.06 ~.071 . -13.0 66.8 just inside stable (not shown)
2 -0.02 0.20 ~.091 -10.0 61.3 border of finger 1.2

3 -0.025 0.20 -JA11 - 8.0 55.i finger 1.3

4 -0.033 0.20 -.143 - 6.0 66.8 finger 1.4

5 -0.042 0.20 -.172 - 4.8 34.8 finger 1.5

6 -0.0665 0.20 -.189 - 4.3 28.8 1inside diff. imst. 1.6

(finger region)

7 0.062 -0.20 +.238 - 3.2 3.3 overstability 2.6

8  0.080 =0.20 +.286 -'2.5  12.0 - overstability 2.5

9 0.091 -0.20 +.312 - 2.2 25.6 overstability 2.4
10 0.100 -0.20 +.333 - 2.0 36.7 overstability 2.3
11 0.133 -0.20 +.400 - 1.5 77.2 overstability 2,2
12 0.04 0.04 +.5 +1 65.9 stable 1.1, 2.1

8 Jy is the total number of fringes in the Gouy pattern.
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Fig. 1

Criteria plot CP for 5rCl5(0.5M)-NaCl(0.5M)-H,0. Instability criteria vs.
normalized Ac; for Ac;>U, Acy>0. All compositions are stable

including run 12.

Fig. 2

CP for SrCly(0.5M)-NaC1(0.5M)-Hy0. Instability criteria vs. normalized
Ac; for Ac;<0, Acpy>0. Run 1 is stable; runs 2-5 are
statically stable but unstable to fingering at the center; run 6 is statically

and fingering unstable.

Fig. 3

CP for SrCl,(0.5M)-NaC1(0.5M)-Ho0. Instability criteria vs. normalized
Acq for Acl>0, Ac2<0. Runs 7-11 are in the composition region
for static-overstable instability at boundary edges.
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Fig. 4

CLD for the system SrCly(0.5M)-NaCl(0.5M)-Hy0 at 25°C.

Line F: Onset line for appearance of fingers at boundary center (F2=0).

Line D: Onset line for static instability at boundary center (G3=0).

Line N: Neutral density or solution overturn line (Sm=0).

Line R: Isorefractometric line (J_ =0, with same number of fringes above and

m
below undeviated slit image).

Line G: Onset line for static~overstability at boundary edges (Gg=U).

The numbers 1-12 indicate the compositions of top and bottom
solutions for all our runms. For numerical values see Table I1I.

Fig. 5

Sketches of the "clock-like diagrams” CLD for various D;; and Hy/
conditions showing composition regions for stable and un table undaries.

(D
(2)
(F)
(D)

(N)
(6)

Instability conditions at the center of the boundary (fingers).
Instability conditions at the edges of the boundary (overstability).
Limiting slope for fingers at center (FQ=0 or Eq. 43).

Limiting slope for density inversions at center due to diffusion
(G9=0 or Eq. 41).

Neutral density line (S;=0 or Eq. 3).

Limiting slope for overstability at edges (Gy=0 or Eq. 39).
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Fig. 6

Density distribution through diffusion boundary in a termary system for
various Acy/Acj conditions if convection were inhibited.

(1) Density profile corresponding to onset of finger instability at boundary
center.

(2) Density profile for fingering instability, Acy/Acy conditions in
center between lines F and D of figure 4.

(3) Profile at Acp/Ac; given by line D of figure 4.

(4) Profile for Acy/Acy compositions between lines D and N of figure
4, '

(5) Profile at neutral density line (solution overturn), line N.

(6) Profile at onset of overstability at edges of the boundary (line G of
figure 4).

(7-8) Profile for overstability at edges, Acy/Acj conditions between
lines G and N of figure 4.

(9) Profile at neutral density line (line N of figure 4); same as graph 5
with top and bottom solutions reversed.

The graphs of density gradients through the boundary corresponding to graphs
1, 2, 3, 4, and 6, 7, 8 can be seen in Ref. 5: Fig. 3 graphs B, 3, 4, 5, and
A, 2, 1 respectively.

Fig. 7

Philpot-Svensson Optical System, with light source (LS), schlieren lems (SL)
cell mask (M), Tiselius cell (C), schlieren plane (SP), camera lens (CL),
cylinder lens (CY), and photographic plane of focus (PP).
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Plate 1

Comparison of modified-Gouy fringes from a stable composition (rum 12) with
compositions going increasingly deeper into the finger instability regionm at
the boundary center (runs 2-6). Run 6 is also statically unstable.

Pictures 1-6 are respectively: Run 12 (stable) at 17'; Run 2 at 8'; Run 3 at
10'; Run 4 at 4.3"'; Run 5 at 4'; Run 6 at 5°'.

For Acy/Acy data see Table II.

Plate 2

Comparison of modified-Gouy fringes from a stable composition (run 12) with
compositions increasingly deep in the static—-overstability region at the

boundary edges (rums 7-11).

Pictures 1-6 are respectively: Run 12 (stable) at 17;; Run 11 at 3'; Kun 10
at 10'; Run 9 at 11'; Run 8 at 11'; Run 7 at 33°'.

For Acy/Ac) data see Table II.

According to Eq. (39), which shows Acy/Ac; is independent of the

H2/H ratio, a refractive index inversion, as well as a density and a
concentration inversion, appears at the edges of the boundary. Therefore,
Gouy fringes can be seen on both sides of undeviated light. As the
compositions approach the isorefractometric line, the number of upward fringes

increases with respect to that of downward omes.

Plate 3

Gouy and SSR pictures for Run 6 (fingers). Acy/Acy=-4.3 at different
times. Pictures 1-5: 5', 11.4', 17', 23', 47'; 6-10: 2.5', 9', 15', 21',

45'.

~40~



Plate 4

Gouy and SSR pictures of Run 7 (overstability). Acy/Ac3=-2.5 at
different times. Pilctures 1-4: 5', 11', 17', 33'; 6-9:

Picture Run 12 (stable boundary), 21°'.

Plate 5

Schlieren pictures of Run 6 (fingers). Acp/Aci=—4.3 at different
times. Pictures 1-4: 4', 10', 15', 32'. _

Plate 6

Schlieren pictures of Run 7 (overstability). Acp/Aci=-3.2 at
different times. Pictures 1-6: 10', 16', 31', 46', 63', 136°'.
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Instability criteria
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